Heating controller with neural thermal model written in Python
Jacek Kowalski
2018-06-24 66a9fb40efe1311b34a3cee3f83f10c6990759af
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import abc
import json
 
import numpy
import scipy.linalg
from keras import Sequential
from keras.layers import Dense
from keras.models import load_model
 
model_types = {}
 
 
class Model:
    @abc.abstractmethod
    def get_temperature(self, flat_history: numpy.array) -> float:
        pass
 
    @abc.abstractmethod
    def save(self, filename):
        pass
 
    @classmethod
    def load(cls, config, filename):
        return model_types[config['model_type']]._load(filename)
 
    @abc.abstractclassmethod
    def _load(cls, filename):
        pass
 
    @classmethod
    def generate(cls, config: dict):
        return model_types[config['model_type']].generate(config)
 
 
class LinearModel(Model):
    def __init__(self, model):
        self.model = model
 
    def get_temperature(self, flat_history):
        return sum(numpy.multiply(self.model, flat_history))
 
    def save(self, filename):
        with open(filename, 'w') as fp:
            json.dump(self.model.tolist(), fp)
 
    @classmethod
    def _load(cls, filename):
        with open(filename, 'r') as fp:
            model = json.load(fp)
        model = numpy.array(model)
        return cls(model)
 
    @classmethod
    def generate(cls, config: dict):
        from .ArgParser import get_sliding_window_from_config
        sliding_window = get_sliding_window_from_config(config)
        xs = []
        ys = []
        for x in sliding_window:
            xs.append(x.get_model_values())
            ys.append(x.get_model_target())
        return cls(scipy.linalg.lstsq(xs, ys)[0])
 
 
model_types['linear'] = LinearModel
 
 
class NeuralModel(Model):
    def __init__(self, model):
        self.model = model
 
    def get_temperature(self, flat_history):
        state = numpy.reshape(flat_history, [1, len(flat_history)])
        result = self.model.predict(state)
        return result[0][0]
 
    @staticmethod
    def _build_model(state_size):
        model = Sequential()
        model.add(Dense(int(state_size / 2) or 1, activation='linear',
                        input_dim=state_size,
                        kernel_initializer='random_uniform'))
        model.add(Dense(int(state_size / 4) or 1, activation='linear',
                        kernel_initializer='random_uniform'))
        model.add(Dense(int(state_size / 8) or 1, activation='linear',
                        kernel_initializer='random_uniform'))
        model.add(Dense(1, activation='linear',
                        kernel_initializer='random_uniform'))
        model.compile(optimizer='adagrad',
                      loss='mean_squared_error',
                      metrics=['accuracy'])
        return model
 
    def save(self, filename):
        self.model.save(filename)
 
    @classmethod
    def _load(cls, filename):
        model = load_model(filename)
        return cls(model)
 
    @classmethod
    def generate(cls, config: dict):
        from .ArgParser import get_sliding_window_from_config
        sliding_window = get_sliding_window_from_config(config)
        window = next(sliding_window)
        model = cls._build_model(window.get_model_size())
 
        xs = []
        ys = []
        for window in sliding_window:
            xs.append(window.get_model_values())
            ys.append([window.get_next_value('temp_in')])
 
        model.fit(numpy.array(xs), numpy.array(ys), epochs=config['model_epochs'], batch_size=32, shuffle=True)
        return cls(model)
 
 
model_types['neural'] = NeuralModel
 
 
class NeuralModelLess(NeuralModel):
    @staticmethod
    def _build_model(state_size):
        model = Sequential()
        model.add(Dense(int(state_size / 2) or 1, activation='linear',
                        input_dim=state_size,
                        kernel_initializer='random_uniform'))
        model.add(Dense(int(state_size / 4) or 1, activation='linear',
                        kernel_initializer='random_uniform'))
        model.add(Dense(int(state_size / 8) or 1, activation='linear',
                        kernel_initializer='random_uniform'))
        model.add(Dense(1, activation='linear',
                        kernel_initializer='random_uniform'))
        model.compile(optimizer='adagrad',
                      loss='mean_squared_error',
                      metrics=['accuracy'])
        return model
 
model_types['neural_less'] = NeuralModelLess
 
 
class NeuralModelMore(NeuralModel):
    @staticmethod
    def _build_model(state_size):
        model = Sequential()
        model.add(Dense(int(state_size / 2) or 1, activation='linear',
                        input_dim=state_size,
                        kernel_initializer='random_uniform'))
        model.add(Dense(int(state_size / 4) or 1, activation='linear',
                        kernel_initializer='random_uniform'))
        model.add(Dense(int(state_size / 8) or 1, activation='linear',
                        kernel_initializer='random_uniform'))
        model.add(Dense(1, activation='linear',
                        kernel_initializer='random_uniform'))
        model.compile(optimizer='adagrad',
                      loss='mean_squared_error',
                      metrics=['accuracy'])
        return model
 
model_types['neural_more'] = NeuralModelMore
 
 
class NeuralModelRelu(NeuralModel):
    @staticmethod
    def _build_model(state_size):
        model = Sequential()
        model.add(Dense(int(state_size / 2) or 1, activation='linear',
                        input_dim=state_size,
                        kernel_initializer='random_uniform'))
        model.add(Dense(int(state_size / 4) or 1, activation='relu',
                        kernel_initializer='random_uniform'))
        model.add(Dense(int(state_size / 8) or 1, activation='relu',
                        kernel_initializer='random_uniform'))
        model.add(Dense(1, activation='linear',
                        kernel_initializer='random_uniform'))
        model.compile(optimizer='adagrad',
                      loss='mean_squared_error',
                      metrics=['accuracy'])
        return model
 
model_types['neural_relu'] = NeuralModelRelu
 
 
class NeuralModelReduced(NeuralModel):
    @staticmethod
    def _build_model(state_size):
        model = Sequential()
        model.add(Dense(int(state_size / 2) or 1, activation='linear',
                        input_dim=state_size,
                        kernel_initializer='random_uniform'))
        model.add(Dense(1, activation='linear',
                        kernel_initializer='random_uniform'))
        model.compile(optimizer='adagrad',
                    loss='mean_squared_error',
                    metrics=['accuracy'])
        return model
 
model_types['neural_half'] = NeuralModelReduced
 
 
class NeuralModelSqueezeExpand(NeuralModel):
    @staticmethod
    def _build_model(state_size):
        model = Sequential()
        model.add(Dense(int(state_size / 2) or 1, activation='linear',
                        input_dim=state_size,
                        kernel_initializer='random_uniform'))
        model.add(Dense(int(state_size / 4) or 1, activation='linear',
                        kernel_initializer='random_uniform'))
        model.add(Dense(int(state_size / 2) or 1, activation='linear',
                        kernel_initializer='random_uniform'))
        model.add(Dense(1, activation='linear',
                        kernel_initializer='random_uniform'))
        model.compile(optimizer='adagrad',
                      loss='mean_squared_error',
                      metrics=['accuracy'])
        return model
 
model_types['neural_hqh'] = NeuralModelSqueezeExpand