commit | author | age
|
425bf7
|
1 |
import abc |
JK |
2 |
import json |
|
3 |
|
|
4 |
import numpy |
|
5 |
import scipy.linalg |
|
6 |
from keras import Sequential |
|
7 |
from keras.layers import Dense |
|
8 |
from keras.models import load_model |
|
9 |
|
|
10 |
model_types = {} |
|
11 |
|
|
12 |
|
|
13 |
class Model: |
|
14 |
@abc.abstractmethod |
|
15 |
def get_temperature(self, flat_history: numpy.array) -> float: |
|
16 |
pass |
|
17 |
|
|
18 |
@abc.abstractmethod |
|
19 |
def save(self, filename): |
|
20 |
pass |
|
21 |
|
|
22 |
@classmethod |
|
23 |
def load(cls, config, filename): |
|
24 |
return model_types[config['model_type']]._load(filename) |
|
25 |
|
|
26 |
@abc.abstractclassmethod |
|
27 |
def _load(cls, filename): |
|
28 |
pass |
|
29 |
|
|
30 |
@classmethod |
|
31 |
def generate(cls, config: dict): |
|
32 |
return model_types[config['model_type']].generate(config) |
|
33 |
|
|
34 |
|
|
35 |
class LinearModel(Model): |
|
36 |
def __init__(self, model): |
|
37 |
self.model = model |
|
38 |
|
|
39 |
def get_temperature(self, flat_history): |
|
40 |
return sum(numpy.multiply(self.model, flat_history)) |
|
41 |
|
|
42 |
def save(self, filename): |
|
43 |
with open(filename, 'w') as fp: |
|
44 |
json.dump(self.model.tolist(), fp) |
|
45 |
|
|
46 |
@classmethod |
|
47 |
def _load(cls, filename): |
|
48 |
with open(filename, 'r') as fp: |
|
49 |
model = json.load(fp) |
|
50 |
model = numpy.array(model) |
|
51 |
return cls(model) |
|
52 |
|
|
53 |
@classmethod |
|
54 |
def generate(cls, config: dict): |
|
55 |
from .ArgParser import get_sliding_window_from_config |
|
56 |
sliding_window = get_sliding_window_from_config(config) |
|
57 |
xs = [] |
|
58 |
ys = [] |
|
59 |
for x in sliding_window: |
|
60 |
xs.append(x.get_model_values()) |
|
61 |
ys.append(x.get_model_target()) |
|
62 |
return cls(scipy.linalg.lstsq(xs, ys)[0]) |
|
63 |
|
|
64 |
|
|
65 |
model_types['linear'] = LinearModel |
|
66 |
|
|
67 |
|
|
68 |
class NeuralModel(Model): |
|
69 |
def __init__(self, model): |
|
70 |
self.model = model |
|
71 |
|
|
72 |
def get_temperature(self, flat_history): |
|
73 |
state = numpy.reshape(flat_history, [1, len(flat_history)]) |
|
74 |
result = self.model.predict(state) |
|
75 |
return result[0][0] |
|
76 |
|
|
77 |
@staticmethod |
|
78 |
def _build_model(state_size): |
|
79 |
model = Sequential() |
|
80 |
model.add(Dense(int(state_size / 2) or 1, activation='linear', |
|
81 |
input_dim=state_size, |
|
82 |
kernel_initializer='random_uniform')) |
|
83 |
model.add(Dense(int(state_size / 4) or 1, activation='linear', |
|
84 |
kernel_initializer='random_uniform')) |
|
85 |
model.add(Dense(int(state_size / 8) or 1, activation='linear', |
|
86 |
kernel_initializer='random_uniform')) |
|
87 |
model.add(Dense(1, activation='linear', |
|
88 |
kernel_initializer='random_uniform')) |
|
89 |
model.compile(optimizer='adagrad', |
|
90 |
loss='mean_squared_error', |
|
91 |
metrics=['accuracy']) |
|
92 |
return model |
|
93 |
|
|
94 |
def save(self, filename): |
|
95 |
self.model.save(filename) |
|
96 |
|
|
97 |
@classmethod |
|
98 |
def _load(cls, filename): |
|
99 |
model = load_model(filename) |
|
100 |
return cls(model) |
|
101 |
|
|
102 |
@classmethod |
|
103 |
def generate(cls, config: dict): |
|
104 |
from .ArgParser import get_sliding_window_from_config |
|
105 |
sliding_window = get_sliding_window_from_config(config) |
|
106 |
window = next(sliding_window) |
|
107 |
model = cls._build_model(window.get_model_size()) |
|
108 |
|
|
109 |
xs = [] |
|
110 |
ys = [] |
|
111 |
for window in sliding_window: |
|
112 |
xs.append(window.get_model_values()) |
|
113 |
ys.append([window.get_next_value('temp_in')]) |
|
114 |
|
|
115 |
model.fit(numpy.array(xs), numpy.array(ys), epochs=config['model_epochs'], batch_size=32, shuffle=True) |
|
116 |
return cls(model) |
|
117 |
|
|
118 |
|
|
119 |
model_types['neural'] = NeuralModel |
|
120 |
|
|
121 |
|
|
122 |
class NeuralModelLess(NeuralModel): |
|
123 |
@staticmethod |
|
124 |
def _build_model(state_size): |
|
125 |
model = Sequential() |
|
126 |
model.add(Dense(int(state_size / 2) or 1, activation='linear', |
|
127 |
input_dim=state_size, |
|
128 |
kernel_initializer='random_uniform')) |
|
129 |
model.add(Dense(int(state_size / 4) or 1, activation='linear', |
|
130 |
kernel_initializer='random_uniform')) |
|
131 |
model.add(Dense(int(state_size / 8) or 1, activation='linear', |
|
132 |
kernel_initializer='random_uniform')) |
|
133 |
model.add(Dense(1, activation='linear', |
|
134 |
kernel_initializer='random_uniform')) |
|
135 |
model.compile(optimizer='adagrad', |
|
136 |
loss='mean_squared_error', |
|
137 |
metrics=['accuracy']) |
|
138 |
return model |
|
139 |
|
|
140 |
model_types['neural_less'] = NeuralModelLess |
|
141 |
|
|
142 |
|
|
143 |
class NeuralModelMore(NeuralModel): |
|
144 |
@staticmethod |
|
145 |
def _build_model(state_size): |
|
146 |
model = Sequential() |
|
147 |
model.add(Dense(int(state_size / 2) or 1, activation='linear', |
|
148 |
input_dim=state_size, |
|
149 |
kernel_initializer='random_uniform')) |
|
150 |
model.add(Dense(int(state_size / 4) or 1, activation='linear', |
|
151 |
kernel_initializer='random_uniform')) |
|
152 |
model.add(Dense(int(state_size / 8) or 1, activation='linear', |
|
153 |
kernel_initializer='random_uniform')) |
|
154 |
model.add(Dense(1, activation='linear', |
|
155 |
kernel_initializer='random_uniform')) |
|
156 |
model.compile(optimizer='adagrad', |
|
157 |
loss='mean_squared_error', |
|
158 |
metrics=['accuracy']) |
|
159 |
return model |
|
160 |
|
|
161 |
model_types['neural_more'] = NeuralModelMore |
|
162 |
|
|
163 |
|
|
164 |
class NeuralModelRelu(NeuralModel): |
|
165 |
@staticmethod |
|
166 |
def _build_model(state_size): |
|
167 |
model = Sequential() |
|
168 |
model.add(Dense(int(state_size / 2) or 1, activation='linear', |
|
169 |
input_dim=state_size, |
|
170 |
kernel_initializer='random_uniform')) |
|
171 |
model.add(Dense(int(state_size / 4) or 1, activation='relu', |
|
172 |
kernel_initializer='random_uniform')) |
|
173 |
model.add(Dense(int(state_size / 8) or 1, activation='relu', |
|
174 |
kernel_initializer='random_uniform')) |
|
175 |
model.add(Dense(1, activation='linear', |
|
176 |
kernel_initializer='random_uniform')) |
|
177 |
model.compile(optimizer='adagrad', |
|
178 |
loss='mean_squared_error', |
|
179 |
metrics=['accuracy']) |
|
180 |
return model |
|
181 |
|
|
182 |
model_types['neural_relu'] = NeuralModelRelu |
|
183 |
|
|
184 |
|
|
185 |
class NeuralModelReduced(NeuralModel): |
|
186 |
@staticmethod |
|
187 |
def _build_model(state_size): |
|
188 |
model = Sequential() |
|
189 |
model.add(Dense(int(state_size / 2) or 1, activation='linear', |
|
190 |
input_dim=state_size, |
|
191 |
kernel_initializer='random_uniform')) |
|
192 |
model.add(Dense(1, activation='linear', |
|
193 |
kernel_initializer='random_uniform')) |
|
194 |
model.compile(optimizer='adagrad', |
|
195 |
loss='mean_squared_error', |
|
196 |
metrics=['accuracy']) |
|
197 |
return model |
|
198 |
|
|
199 |
model_types['neural_half'] = NeuralModelReduced |
|
200 |
|
|
201 |
|
|
202 |
class NeuralModelSqueezeExpand(NeuralModel): |
|
203 |
@staticmethod |
|
204 |
def _build_model(state_size): |
|
205 |
model = Sequential() |
|
206 |
model.add(Dense(int(state_size / 2) or 1, activation='linear', |
|
207 |
input_dim=state_size, |
|
208 |
kernel_initializer='random_uniform')) |
|
209 |
model.add(Dense(int(state_size / 4) or 1, activation='linear', |
|
210 |
kernel_initializer='random_uniform')) |
|
211 |
model.add(Dense(int(state_size / 2) or 1, activation='linear', |
|
212 |
kernel_initializer='random_uniform')) |
|
213 |
model.add(Dense(1, activation='linear', |
|
214 |
kernel_initializer='random_uniform')) |
|
215 |
model.compile(optimizer='adagrad', |
|
216 |
loss='mean_squared_error', |
|
217 |
metrics=['accuracy']) |
|
218 |
return model |
|
219 |
|
|
220 |
model_types['neural_hqh'] = NeuralModelSqueezeExpand |